|
罗丹锋 |
发布时间: 2020-10-01 浏览次数: 269 |
教师简介 罗丹锋,男,湖北潜江人,汉族,博士研究生,副教授,硕士生导师。 邮箱:dfluo@gzu.edu.cn 主要经历 一.主要学习经历 (1)2015-09 至 2020-06, 湖南师范大学, 应用数学, 博士 (2)2010-09 至 2014-06, 南阳理工学院, 应用数学, 学士 二.主要工作经历 2020年9月至今,贵州大学,数学与统计学院。 主要贡献 (1)本科生课程:《数学分析》《数学物理方程》《高等数学》。 (2)研究生课程:《分数阶微分方程理论与应用》《常微分方程泛函方法》 现主要从事分数阶微分方程稳定性,分数阶随机控制,随机微分方程平均原理,以及切换系统镇定问题的研究。 一.主持或参加科研项目 (1) 国家自然科学基金委员会,地区科学基金项目,12361035,非瞬时脉冲条件下分数阶随机系统的稳定性及其相关研究,在研,主持。 (2)国家自然科学基金委员会,面上项目,12071123,随机偏微分方程的正则性与遍历性研究,在研,参与。 (3)贵州省自科项目,一般项目,QKHJC-ZK[2024]YB061,分数阶系统的Ulam-Hyers稳定性研究,在研,主持。 (4)贵州大学,一流学科人才计划项目,202002,脉冲作用下的分数阶随机动力系统解的研究,在研,主持。 二.学术兼职 (1) 美国《数学评论》(Mathematical Reviews) 评论员。 (2) 国际SCI 期刊特刊客座编辑: · Special Issue in Fractal and Fractional : Analysis of Fractional Stochastic Differential Equations and Their Applications. 三.科研论文(部分) [1] Zou J., Luo D.F.*, On the averaging principle of Caputo type neutral fractional stochastic differential equations, Qualitative Theory of Dynamical Systems, 2024, 23(2), 82. [2] Luo D.F., Wang X., Caraballo T., Zhu Q.X.*, Ulam-Hyers stability of Caputo-type fractional fuzzy stochastic differential equations with delay, Communications in Nonlinear Science and Numerical Simulation, 2023, 121, 107229, 17pp. [3] Tian M.Q.,Luo D.F.*, Finite-time stability results for fuzzy fractional stochastic delay system under Granular differentiability concept, Iranian Journal of Fuzzy Systems, 2023, 20(5), 135-150. [4] Luo D.F., Tian M.Q., Zhu Q.X.*, Some results on finite-time stability of stochastic fractional-order delay differential equations, Chaos Solitons and Fractals, 2022, 158: 111996. [5] Wang X., Luo D.F.*, Zhu Q.X., Ulam-Hyers stability of caputo type fuzzy fractional differential equation with time-delays, Chaos Solitons and Fractals, 2022, 156: 111822. [6] Luo D.F., Zhu Q.X.*, Luo Z.G., A novel result on averaging principle of stochastic Hilfer-type fractional system involving non-Lipschitz coefficients, Applied Mathematics Letters, 2021, 122: 107549. [7] Luo D.F.*, Abdeljawad T.,Luo Z.G., Ulam-Hyers stability results for a novel nonlinear nabla Caputo fractional variable-order difference system, Turkish Journal of Mathematics, 2021, 45(1): 456-470. [8] Luo D.F., Zhu Q.X.*, Luo Z.G., An averaging principle for stochastic fractional differential equations with time-delays, Applied Mathematics Letters, 2020, 105: 106290. [9] Tian M.Q.,Luo D.F.*, Existence and finite-time stability results for impulsive Caputo-type fractional stochastic differential equations with time delays, Mathematica Slovaca, 2023, 73(2), 387-406. [10] Zou J., Luo D.F.*, Li M.M., The existence and averaging principle for stochastic fractional differential equations with impulses, Mathematical Methods in the Applied Sciences, 2023, 46(6), 6857-6874. [11] Luo D.F., Luo Z.G.*, Existence and Hyers-Ulam stability results for a class of fractional order delay differential equations with non-instantaneous impulses, Mathematica Slovaca, 2020, 70(5), 1231-1248. [12] Luo D.F., Luo Z.G.*, Existence of solutions for fractional differential inclusions with initial value condition and non-instantaneous impulses, Filomat, 2019, 33(17), 5499-5510. [13] Huang J.Z., Luo D.F.*, Existence and controllability for conformable fractional stochastic differential equations with infinite delay via measures of noncompactness, Chaos, 2023, 33(1): 013120, 14 pp. [14] Huang J.Z., Luo D.F.*, Relatively exact controllability for higher-order fractional stochastic delay differential equations, Information Sciences, 2023, 648, 119631. [15] Huang J.Z., Luo D.F.*, Zhu Q.X., Relatively exact controllability for fractional stochastic delay differential equations of order (1,2], Chaos, Solitons and Fractals, 2023, 170, 113404. [16] Huang J.Z., Luo D.F.*, Relatively exact controllability of fractional stochastic delay system driven by Lévy noise, Mathematical Methods in the Applied Sciences, 2023, 46(9), 11188-11211. [17] Yuan Y.H., Luo D.F.*,Relatively exact controllability of fractional stochastic neutral system with two incommensurate constant delays, Mathematical Methods in the Applied Sciences, 2024, 1-18, DOI 10.1002/mma.9932. 详情可见:https://www.researchgate.net/profile/Danfeng-Luo?ev=prf_overview |
Copyright◎ 2016 math.gzu.edu.cn All Rights Reserved 贵州大学数学与统计学院 版权所有 邮编:550025 Tel:0851-83627662(办公室); 0851-83627557(教学科研科(含研究生管理)); 0851-83620186(学生科(本科)) |