中山大学赵育林教授学术报告
发布时间: 2021-09-09 浏览次数: 930

题目:The necessary and sufficient conditions for the real Jacobian conjecture

时间:2021910日 星期五下午:1530——1630

摘要In this talk, we focus on investigating the real Jacobian conjecture. The talk consists of two parts. The first part is to study  the two-dimensional real Jacobian conjecture via the method of the qualitative theory of dynamical systems. We provide some necessary and sufficient conditions such that the two-dimensional real Jacobian conjecture holds. Applying these results we present an algebraic criterion such that two-dimensional real Jacobian conjecture holds.  This algebraic criterion improves the main result of Braun et al [JDE 260(2016) 5250-5258]. In the second part, the necessary and sufficient conditions on the n-dimensional real Jacobian conjecture is obtained. Using the tool from the nonlinear functional analysis, F(x)  is a global injective if and only if the norm of F(x) approaches to infinite as the norm of x tends to infinity, which is a generalization of  the   algebraic criterion of  two-dimensional.

报告人简介赵育林,中山大学数学学院(珠海)院长、博士生导师, 2007入选教育部新世纪优秀人才支持计划。赵育林教授从事常微分方程定性理论和分支理论的研究工作,包括弱化的Hilbert 十六问题、周期单调性、代数极限环、高阶极限环分支问题等,已在J. Differential EquationNonlinearity、中国科学(英文版)等期刊上发表多篇学术论文。

 

 
友情链接:
 
Copyright◎ 2016 math.gzu.edu.cn All Rights Reserved 贵州大学数学与统计学院 版权所有
邮编:550025 Tel:0851-83627662(办公室); 0851-83627557(教学科研科(含研究生管理)); 0851-83620186(学生科(本科))